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1 Introduction

There is an ever increasing interest in utilising Fiber
Reinforced Polymers (FRP) in the automotive indus-
try, especially for structural components. This calls
for computational tools which can be used for the
evaluation of crashworthiness. One key point is the
need for computational efficiency as the models are
generally very complex. Furthermore, there is a
multitude of failure mechanisms which may be trig-
gered in a layered composite, during impact or crash,
with multiple delaminations being one of the primary
mechanisms.

It is therefore of high importance to be able to model
delaminations in a computationally efficient manner,
especially for a large number of laminae. In fact, to be
able to simulate the progressive failure of FRP com-
ponents is a necessity for such components to be com-
petitive within the automotive industry, as e.g. stated
in the ERTRAC Research and Innovation Roadmap
for Safe Road Transport [1].

In view of this, this work is a first step towards devel-
oping a computationally efficient shell element which
can account for multiple (interlaminar) delaminations.
One commonly adopted approach is to model each in-
dividual ply (or a set of plies) using several stacked
shell or solid elements. However, this will lead to a
large amount of degrees of freedom, especially when
the number of plies increases. Another, more econom-
ical, approach is to use a single shell element which
can account (internally) for the discontinuities that de-
velop during delamination. Such an element may be
constructed by enriching a suitable shell element with
discontinuous shape functions in accordance with the
eXtended Finite Element Method (XFEM), cf. [2] for

a similar approach. Note that the present approach
is similar to a layerwise model where displacements
jumps are hierarchically added to the displacements
field, cf. e.g. [3].

2 Continuous shell kinematics

To set the stage, we first briefly describe the under-
lying shell kinematics for a non-delaminated shell,
which in the subsequent section then will be extended
to allow for arbitrarily many delaminations.

2.1 Initial shell geometry and convected coordi-
nates

As a staring point, the initial configuration B0 of the
shell is considered parameterised in terms of con-
vected (covariant) coordinates (ξ1, ξ2, ξ) as

B0 =
{
X := Φ(ξ) = Φ̄(ξ̄) + ξM(ξ̄)

with ξ̄ ∈ A and ξ ∈ h0
2 [−1, 1]

}
(1)

where we introduced the contracted notation ξ =
(ξ1, ξ2, ξ) and ξ̄ = (ξ1, ξ2) and where the mapping
Φ(ξ) maps the inertial Cartesian frame into the un-
deformed configuration, cf. Figure 1. Furthermore,
A is the midsurface of the inertial configuration. In
Eq. (1), the mapping Φ is defined by the midsurface
placement Φ̄ and the outward unit normal vector field
M (with |M | = 1). The coordinate ξ is associated
with this direction and h0 is the initial thickness of the
shell.

Furthermore, it should be noted that

dX = (Gα ⊗Gα) · dX +M ⊗M · dX =

= Gα(ξ)dξα +M(ξ̄)dξ (2)



whereby the covariant basis vectors are defined by

Gα = Φ,α + ξM ,α α = 1, 2 (3)

G3 = G3 = M (4)

where •,α denotes the derivative with respect to ξα. In
addition, in Eq. (2) it was used that the contravariant
basis vectorsGi are associated with the covariant vec-
tors Gi in the normal way, i.e. Gi ⊗Gi = I, leading
to

Gj = GijG
i, Gj = GijGi (5)

with

Gij = Gi ·Gj and Gij = (Gij)
−1 (6)

Finally, the infinitesimal volume element dB0 of the
reference configuration is formulated in the convected
coordinates as

dB0 = b0dξ1dξ2dξ with b0 = (G1 ×G2) ·G3 (7)

2.2 Current shell geometry

The current (deformed) geometry is in the present for-
mulation described by the time dependent deforma-
tion map ϕ(ξ, t) ∈ B of the inertial Cartesian frame
as

x(ξ, t) = ϕ̄(ξ̄, t) + ξm(ξ̄, t) +
1

2
ξ2γ(ξ̄, t)m(ξ̄, t)

(8)
where the mapping is defined by the midsurface place-
ment ϕ̄, the spatial director field m and an additional
scalar thickness inhomogeneity strain γ, cf. Figure 1.
As can be seen, the specification of the current config-
uration corresponds to a second order Taylor expan-
sion along the director field, involving the inhomo-
geneity strain γ, thereby describing inhomogeneous
thickness deformation effects of the shell. In particu-
lar, the pathological Poisson locking effect is avoided
in this fashion.

To identify the corresponding deformation gradient,
a relative motion dx of the placement map ϕ with
respect to the reference placement Φ is considered as

dx = F · dX with F =
∂ x

∂ ξ

∂ ξ

∂X
= gi ⊗Gi (9)

where the spatial covariant basis vectors gi = ∂x/∂ξi
are identified as

gα = ϕ̄,α +

(
ξ +

1

2
γξ2

)
m,α +

1

2
γ,αξ

2m (10)

g3 = (1 + γξ)m (11)

3 XFEM extension for multiple delaminations

As stated above, the primary focus of the current work
is to develop a shell element formulation able to rep-
resent arbitrarily many delaminations within one ele-
ment. Consequently, the above basic shell kinematics
need to be extended to allow for displacement and di-
rector discontinuities across each delamination inter-
face. For this purpose, we propose herein a kinemat-
ical extension in line with the XFEM (or partition of
unity concept) such that the deformation map into the
spatial deformed configuration is subdivided into one
continuous and one discontinuous part as

x(ξ, t) = ϕc(ξ, t) +ϕd(ξ, t) (12)

where the continuous part takes on the same form as
the underlying non-delaminated shell element

ϕc(ξ, t) = ϕ̄c(ξ̄, t)+ξmc(ξ̄, t)+
1

2
ξ2γ(ξ̄, t)mc(ξ̄, t)

(13)
As for the discontinuous part, it is considered as a sum
of enrichments – one for each delamination – accord-
ing to the XFEM, however restricted only to discon-
tinuous enrichment of the midsurface placement and
the director field. Hence, in the case of Ndel delami-
nations through the thickness, the discontinuous part
takes on the following form

ϕd(ξ) =

Ndel∑

k=1

HS (Sk(X, t))
(
ϕ̄d
k(ξ̄, t) + ξmd

k(ξ̄, t)
)

= HSk

(
ϕ̄d
k + ξmd

k

)
(sum over k)

(14)

In Eq. (14), HS(Sk(X)) = HSk
is introduced as the

standard Heaviside function pertaining to the particu-
lar delamination surface ΓSk

. Furthermore, Sk is an
associated level set function defining the position ξ̄k
(in thickness direction) of this surface. In particular,



M

G1

G2

A, V

Ω0, B0

Ω, B

m
g2

g1

E1

E2

E3

Inertial configuration

F

Φ

Reference configuration

ϕ

Current configuration

Figure 1: Mappings of shell model defining undeformed and deformed shell configurations relative to inertial
Cartesian frame.

Sk is the signed distance function to the delamination
interface k such that, for the current approach where
we restrict the initial director field to coincide with the
outward normal vector, it can be defined simply as

Sk = ξ − ξ̄k whereby
∂ Sk
∂X

= M (15)

where M is the normal to each delamination sur-
face in the reference configuration. To obtain the cor-
responding deformation gradient, we first emphasise
that

∂ HSk

∂X
=
∂ HSk

∂ Sk

∂ Sk
∂X

= δSkM (16)

where δSk is the Dirac-delta function defined as
∫

B0
δSk • dB0 =

∫

ΓS
k

• dΓSk (17)

for any quantity •.

Consequently, in analogy with Eq. (9)-(11), the defor-
mation gradient pertaining to the extended kinematics
is obtained in the form

F =
(
ϕc +ϕd

)
⊗∇X = F b + δSkF

d
k (18)

where
F b = gb

j ⊗Gj , j = 1, 2, 3 (19)

and
F d
k =

(
ϕ̄d
k + ξmd

k

)
⊗M (20)
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Figure 2: Illustration of a laminate subject to multiple
delaminations.



The corresponding spatial covariant basis vectors are
obtained as

gb
α = ϕ̄c

,α +

(
ξ + γ

1

2
ξ2

)
mc

,α + γ,α
1

2
ξ2mc

+

Ndel∑

k=1

HSk

(
ϕ̄d
k,α + ξmd

k,α

) (21)

gb
3 = (1 + γξ)mc +

Ndel∑

k=1

HSk
md

k (22)

4 Weak form of momentum balance

In this section, we establish the momentum balance
of the shell considering the weak continuum repre-
sentation of the shell applied to the shell kinematics
introduced above. To arrive at the current stress resul-
tant formulation, we start from the basic weak form of
the momentum balance in terms of contributions from
inertia W ine, internal work W int and external work
Wext as

Find: n̂ such that:

W ine
(

¨̂n; δn̂
)

+W int (n̂; δn̂) (23)

+Wext (n̂; δn̂) = 0 ∀δn̂

where we introduced the array of solution fields

n̂T =
(
ϕ̄c,mc, γ, ϕ̄d

k,m
d
k

)
(24)

where, for example, ϕ̄d
k refers to the array

(ϕ̄d
1 , ϕ̄

d
2 , . . . , ϕ̄

d
Ndel

) and represents the additional dis-
continuity fields associated with the existing delami-
nations. Furthermore, the inertia and the internal and
external virtual work contributions are given as

W ine =

∫

B0
ρ0

(
δϕc + δϕd

)
·
(
ϕ̈c + ϕ̈d

)
dB0,

(25)

W int =

∫

B0

(
δFT · F

)
: SdB0 (26)

and

Wext =

∫

B0
ρ0

(
δϕc + δϕd

)
· b dB0

+

∫

∂B0

(
δϕc + δϕd

)
· t1dΩ0

(27)

where b is the body force per unit volume, t1 =
P ·N∂B0 is the nominal traction vector on the outer
boundary ∂B0 and P = F ·S is the first Piola Kirch-
hoff stress tensor.

To obtain the explicit form of each individual term in
Eqs. (25)-(27), we start by concluding that the inertia
part is given by

W ine =

∫

B0
ρ0

(
δϕc +HSk

δϕd
k

)
·
(
ϕ̈c +HSlϕ̈

d
l

)
dB0

=

∫

Ω0

ρ0δn̂
T(M̂ ¨̂n+ M̂ con) dΩ0

(28)

where the consistent mass matrix M̂ and the convec-
tive mass force M̂

con
per unit area are obtained us-

ing a similar strategy as in Reference [4], although ac-
counting for the alternative discontinuity enrichment.
Note that, M con involves contributions from the first
order time derivatives of the displacement field in the
inertia term of the virtual work as described in Refer-
ence [5]. Furthermore, in order to arrive at Eq. (28), a
change of the integration domain from B0 (3D) to Ω0

(2D) was made via the ratio j0(ξ) = b0/ω0 defining
the relation between area and volumetric measures of
the shell defined as

dB0 = j0dξdΩ0 with

dΩ0 = ω0dξ1dξ2 and ω0 = |Φ,1 ×Φ,2|
(29)

Furthermore, when limiting the perpendicular forces
to external pressure – approximated in view of the
Cauchy traction t = −pn on the deformed midsur-
face Ω – the external workWext can be written as

Wext =

∮

∂Ω0

(
δϕ̄c · Ñ c

+ δmc · M̃ c
+ δγM̃s

c
)

ds

+

∮

∂Ω0

(
δϕ̄d

k · Ñ
d
k + δmd

k · M̃
d
k

)
ds

−
∫

Ω
p
(
δϕ̄c + δϕ̄d

)
· n dΩ

(30)

where p = p (t, ξ1, ξ2) is the external pressure, n is
the spatial normal of the deformed midsurface Ω and
where Ñ

c
, M̃

c
, M̃s

c
, Ñ

d
k and M̃

d
k are stress resul-

tants with respect to the prescribed in-plane traction



acting on the outer boundary (perpendicular to the
midsurface), defined as

Ñ
c

=

∫ h0/2

−h0/2
t1dξ (31)

M̃
c

=

∫ h0/2

−h0/2
ξ

(
1 +

1

2
ξγ

)
t1dξ (32)

M̃s
c

=

∫ h0/2

−h0/2

1

2
ξ2mc · t1dξ (33)

Ñ
d
k =

∫ h0/2

−h0/2
HSk

t1dξ =

∫ h0/2

ξ̄k

t1dξ (34)

M̃
d
k =

∫ h0/2

−h0/2
HSk

ξt1dξ =

∫ h0/2

ξ̄k

ξt1dξ (35)

To obtain the explicit form of the internal virtual work
contribution we first note that this contribution can be
reformulated, given the present kinematical represen-
tation, as

W int =

∫

B0

(
δF bT · F b

)
: S dB0

+

Ndel∑

k=1

∫

ΓS
k

(
δϕ̄d

k + ξδmd
k

)
· tcoh(Jϕ̄d

kK)dΩ0

(36)

where tcoh is the (continuous) degrading normal trac-
tion on the delamination surface (with respect to the
outward pointing normal M ), which in the present
approach will be represented by a cohesive zone law
as a function of the delamination discontinuity

Jϕd
kK =

(
ϕ̄d
k + ξ̄km

d
k

)
, (37)

cf. Section 5 below. Based on this, we note that the
’internal work’ can be written as

W int =

∫

Ω0

δn̂T
c N̂ cdΩ0 +

∫

Ω0

δn̂T
d N̂ddΩ0

+

Ndel∑

k=1

∫

ΓS
k

(
δϕ̄d

k + ξδmd
k

)
· tcoh(Jϕ̄d

kK)dΩ0

(38)

where the shell deformation and stress resultant vec-

tors have been introduced as

δn̂T
c =

[
δϕ̄c

,α,m
c
,α, δm

c, δγ,α, δγ
]

δn̂T
d =

[
δϕ̄d

k,α, δm
d
k,α, δm

d
k

]

N̂
T
c = [N cα,M cα,T c,M cα

s , T c
s ]

N̂
T
d =

[
Ndα

k ,Mdα
k ,T d

k

]

(α = 1, 2) involving the membrane, bend-
ing, shear/thickness stretch stress resultants
Nα,Mα,T ,Ndα

k ,Mdα
k ,T d

k (the three latter being
conjugated with the discontinuous displacement
variables) and the higher order stress resultants Mα

s

and Ts. By introducing the abbreviation Sαigi = sαg
the explicit expressions for the stress resultants can
be written

Nα =

∫ h0/2

−h0/2
sαg j0dξ (39)

Mα =

∫ h0/2

−h0/2

(
1 +

1

2
γξ

)
ξsαg j0dξ (40)

T =

∫ h0/2

−h0/2

(
(1 + γξ) s3

g +
1

2
ξ2sαg γ,α

)
j0dξ

(41)

Mα
s =

∫ h0/2

−h0/2

1

2
ξ2sαg ·mcj0dξ (42)

Ts =

∫ h0/2

−h0/2
(
1

2
ξ2sαg ·mc

,α + ξs3
g ·mc)j0dξ

(43)

Ndα
k =

∫ h0/2

ξ̄k

sαg j0dξ (44)

Mdα
k =

∫ h0/2

ξ̄k

ξsαg j0dξ (45)

T d
k =

∫ h0/2

ξ̄k

s3
gj0dξ (46)

Finally, by substituting the displacement field into the
weak form we are given the equation of motion as

Ma = f ext −M con − bint − bcoh (47)

where bint, bcoh, and f ext, denote internal, cohesive
and external forces respectively.
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Figure 3: Bilinear cohesive zone law adopted in the
current paper.

5 Modelling of progressive delamination

As indicated in Section 4, the progressive inter–
laminar fracture process (delamination) is modelled
using a cohesive zone approach. Furthermore, by in-
troducing a cohesive zone model, interpenetration of
the layers is avoided allowing for a realistic represen-
tation of the (interlaminar) kinematics.

5.1 Cohesive zone model

In this paper, a bilinear cohesive zone model, cf. Fig-
ure 3, is adopted instead of a more refined model since
the focus of this study is on the (extended) kinemat-
ics. Furthermore, it keeps the modelling complexity
to a minimum. Also note that the chosen cohesive law
is purely elastic such that any unloading would follow
the loading path in reverse; however, only examples
with monotonic loading is studied in the present pa-
per such that this non-physical unloading behaviour is
avoided.

6 Numerical examples

To illustrate the proposed kinematics, three numerical
examples are presented. The first example concerns
simulation of the common double cantilever beam
(DCB) test with the purpose of validating the kine-
matics of the element under progressive delamination.
The second example illustrates the capability of the el-
ement formulation to kinematically represent two de-
laminations within a single element. The final exam-

EL 126 GPa
ET = ETT′ 10 GPa
GLT = GTT′ 8 GPa
νLT = νTT′ 0.29

Table 1: Material parameters used for the numerical
examples.

ple shows that the each element can handle different
number of delaminations and is thus suitable for sim-
ulation of structures undergoing substantial delamina-
tions. In the examples, a transversely isotropic elastic
material model has been used with material parame-
ters according to Table 1. Furthermore, all laminae
have a zero degree orientation.

6.1 Double cantilever beam (DCB) test

The problem consists of a beam, composed of two
laminae, which has an initial crack (delamination
zone) of length a = 3 mm, see Figure 4 for a de-
scription. The length of the beam is L = 200 mm, has
a height of h = 3 mm and a width of w = 15 mm.

Since this example focus on the growth of a sin-
gle delamination, only one set of discontinuous dofs
{x̄d

1 , m
d
1} needs to be added to the solution field of

the nodes within the delamination zone ΓSk . This will
decouple the beam into its upper and lower layer. In
order to model the progressive growth of the delami-
nation a bilinear cohesive zone, as described in Sub-
section 5.1, is inserted between the two laminae. The
fracture energy associated with mode I loading of the
cohesive zone is set to GIc = 400 N/m in this example.

The beam is modelled using 384 quadratic triangu-
lar elements with an increased mesh density in the re-
gion close to the delamination front. The free ends
of the beam are subjected to prescribed displacements
in the vertical direction with a magnitude p and the
resulting reaction force R is registered. In Figure 5,
the reaction forces corresponding to three values of
the interface strength σfn = {15, 30, 45} MPa are
shown. Also, a reference solution obtained from
Euler-Bernoulli beam theory is indicated. As can be
seen from the figure, the load–reaction curves corre-
spond rather well with beam theory, more so during
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Figure 4: Geometry of the DCB test used in exam-
ple 1.
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Figure 5: Reaction force for DCB simulation with co-
hesive zone.

the delamination phase. Initially, for elastic loading,
the simulated curves do not follow the beam solution.
The reason for this discrepancy is due to the rather low
values used for σfn and GIc. However, as the strength
of the cohesive zone increases, the closer the simu-
lated curves will be to the elastic beam solution. It
can thus be concluded that the proposed shell element
is capable of an accurate representation of progressive
delamination.

6.2 Triple cantilever beam (TCB) test

The second example illustrates the capability of the
prosed element to handle two active delaminations
within each element. The studied problem is a beam
with the same geometry and boundary conditions as
the previous example. However, in this case the beam
is composed of four equal plies and where the two
outermost layers have delaminated a distance of a =

p

pa
L

h

Figure 6: Geometry of the TCB test used in exam-
ple 2.

t
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h

Figure 8: Geometry of the beam with multiple (6) de-
laminations with different lengths.

40 mm, see Figure 6. Furthermore, in order to put em-
phasis on the kinematics, no cohesive zones are active
between the plies.

Beam theory gives that the reaction force necessary
to vertically move the free end of one of the plies a
distance of p = 1 mm is 3.1146 N. The correspond-
ing value obtained from simulation is 3.0993 N which
gives an relative error of 0.49%. In Figure 7, the
mesh and displacement field near the free end of the
beam is shown. Particularly notice that the layers in
a given element is rendered as volume (wedge) ele-
ments stacked; nonetheless, there is only one element
in the thickness direction.

6.3 Multiple delaminations

In order to show the capability of the element to han-
dle multiple delaminations a beam with 6 delamina-
tions, each with different lengths (a = 30 mm), is
studied, cf. Figure 8. The beam is subjected to a con-
stant edge load at the top of the beam at its free end
with the magnitude 103 N/m in the vertical direction.
As can be seen from Figure 9, multiple delamination
zones of different size can be reproduced which makes
the proposed element ideal for simulation structures
undergoing substantial delaminations.



Figure 7: Mesh and displacement field for the triple cantilever beam test (magnification factor = 5).

Figure 9: Displacement field for beam with multiple
delaminations (magnification factor = 50).

7 Concluding remarks

In this paper, the kinematics of a seven parameter
shell element has been extended to handle internal de-
laminations. The extended element formulation, in
line with the XFEM, allows for an arbitrary num-
ber of delaminations. From numerical examples, it
is shown that the element is capable of accurately rep-
resenting the internal discontinuities and can be used
for simulation of progressive delamination. Future
work includes the extension of the element to handle
through the thickness cracks in addition to delamina-
tions. Thereby, being able to capture two prominent
failure mechanisms present in the failure of compos-
ites.
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